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1 Solution of the linear compartmental model

1.1 Model definition

Consider the continuous- time Markov chain X = (X (¢)|t € RT) with state space S = {i}";, m € N,
and rates v = (Y1, .-, Ym-1), Vi € RT,Vi € S\ {m}. For convenience we will set 7, = 0.

OWOWO WS WS WO

This has the following m X m generator matrix

N
T T2 O
M= V2 ; (1)
—TYm-1
O Ym—1 O

which in component form reads

(s 1 s —8::) if 4
Mij _ {7](52 1,5 52]) I 7 #m7 (2)

0 otherwise.

X has an absorbing state at ¢ = m, a unique stationary distribution 7* such that [7*]; = d; ,, but it
is not irreducible, ergodic or reversible (since p;;(t) =0,Vi < j € S).
We now try to solve the system
dmw
dt
for different relationships between the rates +.

= MTF 7TZ'(0) = 52‘1 s (3)

1.2 Distinct rates

The solution to (3) is simpler if all of the rates are distinct, i.e. if v; # v; Vi # j € S\ {m}. We will
use two different methods to solve this system.

1.2.1 Solution via eigenvalue decomposition

Here we start by finding the eigenvalues of M, we solve the characteristic equation
det(M — A1) =0 (4)

By noting that the matrix M — Al is lower triangular, we see that its determinant is the product of
its diagonal entries and so

—)\H —)\ =0, = A=0,—71,—7,- -, —Ym—1- (5)



The eigenvectors equation can then be written in component form as
%
ZMik[Uj]k = —vlvli, Vi,jeS. (6)
k=1

Now define a matrix A whose i-th column is the i-th right eigenvector of M so that M = AAA™!,
where A is a diagonal matrix with i-th diagonal element equal to ;. Substituting for M;; as in (2)
and rearranging, we have

(Vi = vi)Aij = vic14ic1 (7)
and so since ;1 # 0, A;; = 0 for ¢ < j. If we set A;; = 1, then by induction we have

i—1
11 Tk s
Ay = [ojli = § b=y HHET (8)
1 ifi=j,
0 otherwise.

and so the matrix A is also lower triangular. We then write the solution to (3) as
w(t) = eMizr(0) = AeM A (0) = Aetlc 9)

where ¢ is a vector obeying Ac = 7 (0). Clearly, ¢; =1 and for i # 1
Cj L — +c¢=0. (10)

Let us consider the possible solution

1 fori=1,
i—1
G = H _i fori#1. (11)
ol Yi— Vi

Then for i # 1, (10) becomes

i—1j-1 i1 i1 A
Y| i S S § T
S e G e W =Y %
i—1 i 1 i1 i—1
S 1 3y =0 (12)
=kt BT RS TR T ) G
=
and so o
1 7 1
Z =0, since v; # 0,Vi € S\ {m}. (13)

j= ket T
k#j

Now we can show that expression (13) holds for all v; # v; € R, i # j.

Proof. Let there be a set {y;}1" s.t. 7, € C, n € N and v; # 7; Vi # j. Now consider the expression

w



Using the formula for partial fraction decomposition

we have that

j=1 g=1-""
J#i J#
R |
ST S TR
S
j=1 k=1 BT
j#i k#j
n n 1
=1 k1 Ye — Vs
k#j

Combining this with the eigenvectors/values of M we can substitute into (9) to give

)
=) Aice "
j=1

et fori =1, (14)
i—1
HW“XZ 'YJtH fori#1.
k=1 1 Tk T
k#j

1.2.2 Solution via Laplace transform

For the more general case, there are benefits to a Laplace transform approach, which we will introduce
here. We define the Laplace transform of a function f : RT — Re t s f(t) as Z2{f} : C — RY,
s+ f(s) such that

2{f}(s) / f(tyestat (15)

Laplace transforming (3) then gives
st —m(0) = Q7 . (16)

If s is not an eigenvalue of Q, then the matrix s1 — Q is invertible and
F=(s1-Q) 'w(0), so w(t)=2 {(s1-Q)'m(0)}(t) . (17)

We can then calculate the inverse Laplace transform using the residue theorem. Considering the
explicit form of (17) for our model, if we let B(s) = s1 — Q, where s # —v;Vi € S, then B is

invertible and we need to find B~!#(0) where [7(0)]; = &;1, or in component form
m
0)li = B;;'m;(0) = B! (18)
j=1



Using BB™! = 1, and noting that B is lower triangular, we have that
i
> BB =6 (19)
Fori=1: B;' =1/B11 = (s +71)~ % Fori # 1:
i
-1
> BBt =0
j=1

— Z (—’yj‘(si_Lj + (s+ "}/j)(sij) Bj_ll =0

i

_ Vi—1 -1 V-1 -1
fr— B 1 = . = R
il s+ i—1,1 o S+ Yk 11
and so 1
=1,
. s+ ’)’1
[(s1 - Q)" = (0)]; = 1 (20)

Hyk HSJF% iA1.

%
Then finding 7;(t) reduces to calculating jil{fz(s)} where f;(s) = H
k=1
all the poles s = —v; of f are order 1, and so using the residue theorem we have

. Since ~; Vi #£ g,
i Vi # Vi FE ]

Z{fi(s)}t) = Y Reslfi(s)e™, ]
j=1

and so finally

1#£ 1, (22)

mi(t) = 2 {[(s1 - Q' w(0)]:} = H% >< Ze H

which is equivalent to (14).

1.2.3 Derivatives

Lets now take derivatives with respect to the model parameters {7;}. This can be most easily done in
the Laplace domain since we can use the fact that

0 L{f}(s) = L{8;f}(s) , where ; := 0/ , (23)



and so
f(t) =2 {0 2L (24)
If we let 7;(s) = [(s1 — Q)™ 1w (0)]; then

wi(s)  w;(s)

- 1< 7],
B Yi _ S+
3iﬂj(8) = _ Wi(s) i=3j (25)
s+ ’
0 1>7.

Using the convolution theorem for Laplace transforms, we have

P {ﬁj(s) _ 7i(s) } _ ) /0 (e 0

Vi s+ Vi
i—1 ;e —7it — Yne —Tnt ] 1 ryl ¢
= 1] x e
kHl Z ~Yn) klec—% i H%—%
n;ﬁz k;én k;éz
o=t _ o=t N 2 1
= Hvk X Z (7"( ) +te%t> 11
=\ v —m) oy Ve~
where we used the relationship proved in §1.2.1. Thus
( —te it i=5=1,
i—1 %
Yit _ a—Int 1
Hvkxz<7e+te—%t>ﬂ i=j#1,
n—1 Yi = In k=1 T — In
61-77]» (t) = k;énj (26)
S G ) —it 1 S
HWXZ +te™ H i1<7,
=\ =) ity Yk = n
n#i k#n
0 i>7,

which can be checked by computing the derivative directly from (14).

1.3 Arbitrary rates

Consider a general, pure birth chain with m = N 4 1 states {I }évjll, and M distinct parameters

{7i}M,, defined by the following (N + 1) x (N + 1) generator matrix Q, where v; # v; € R* Vi # j €



{1,2,..., M}, and Zg‘ilni:]\f—i—l.

ni ng Zﬁglni nap
e —
-
il
-N
Y1 T2
v O
R (27)
Q:
72
O —TM
Y™
—TM
v 0

1.3.1 Solution

Let us find solutions to (3) using the Laplace transform method. Again defining B(s) = s1—Q, where

s# —yVie{l,..., M}, and following the same procedure in §1.2.2, we can write down
kr
<L> 71_1 I#N+17m1:17
s+
5 kr my—1 ¥ n;
-1 _ ML) 4l <—]> I#N+1,mr#1,
[(s1 — Q) ' (0)]; = (H%I) - ]Hl - # z
M n;
1 . J
! (7—J> I=N+1,
§ . S+

where my € {1,2,...,M} and k; € {1,2,...,n,,,} are counting variables defined by the relation-
ship

mr—1

ni+kr=1, ng:=0. 28
>
=0



Then to calculate 7;(t), we notice that f(s)

= (s + ym,) P T (s + 7)™ has poles at s =

7j=1

—Y1sees —Ymy—1, —Ym;, of order n =ny,... ,ny, 1, kr respectively, and so
my
Al ~
L {F(s)}(t) = Y Res[f(s)e”, -]
j=1
mr—1 ni—1 n, mr—1
_ Z 1 h d J eSt (S+7]) J H (S—i—"}/k)ink
= (n; —1)'s—> v; ds™i~ (5 + Ym, )k Pt
1 dk1*1 (S+’Y )kl myr—1
+——— lim et L 5+ )"k
(/{?] — 1)! s——ym, dskr—1 < (S _|_me[)]€1 k1;11 ( )
myr—1 1 t my—1
1 d™ e’
= —— lim . s+ ) "k
j; (nj — D)l sm—y; ds™ =1 | (s + ym, )k kl;[l ( )
k#j
1 ki1 met

_|_

Now consider function g(s) such that

(b — D)l s=-m,

dskr—1

<e

1

T (s +m) ™

k=

) |

m]—l m]—l

(s + ym, ) R H (s+v) ™ = exp|st— Z ngIn(s +v,) — krln(s + ym,)
k=1 k=1
kA kA

— o9

)

and using a simplified form of Faa di Bruno’s formula

4r
@69(8) — e, (g’(s),g”(s), . 7g(p)(s)) :
where By, (21,2, ..., xp) is the pth-complete Bell polynomial. If we define a px p matrix M, (1, . . .
such that »
(?,;)x]‘—iﬂ 1<,
[Mp]ij = -1 t=j5+1,
0 otherwise,
then we can use the identity
B, (z1,22,...,2,) = det My (z1, 22, ..., 2p)
and so finally
A—1 et mil m ! e it det Hy ;( mr 1
27 T )™ 4l
(s =+ Yy )7 ]1;[1 ! = Oy =) (ny = 1 ! H
k#]

-1

e Tmit det H(t) "t
(k1 —1)! [0

k=1
Here Hy ;(t) = 1if nj = 1, while if n; > 1, Hy ;(¢) is a (n; — 1) x
-1
(nj —1—p)! mzz ng n kr
—1—q)! (i = )P (= Ym )P
H, (1) = (n q i—o Vi J my
[H1,5]pq(t) litj
-1
0

k — 'Ym])

—np

(n; — 1) matrix defined by

+tdpy P<gq,

p=q+1,
otherwise.



Also, H(t) = 1 if k; = 1, while if k7 > 1, H(t) is a (k;y — 1) x (k; — 1) matrix defined by

(kp —1—p)l "=
) j_l_z,z G et T 10w P
[H]pq(t) = k=1 2T (35)
—1 p=q+1,
0 otherwise.
This gives the overall solution
t kr—1
emti((zl[)_l)' I#N+1,mr=1,
= Oy =) =D 2\ =
k#j
mr(t) = Wﬁg—le—vmt det ﬂ[(t) my—1 ’ Vi 2 (36)
I
woor () rEvemeL
M M+1 .. M+1
H ne Z e it det Hy41,(¢) H 1 "tk I N+1
K (nj —1)! T — i B ’
k=1 j=1 J ' k=1 J
k#j

where we define 9 := 1, ypr41 := 0, npyry1 = 1, my41 := M + 2 and kyy1 := 0 for simplicity of
notation.

1.3.2 Derivatives

An analytic expression also allows us to calculate derivatives in a similar way to §1.2.3. Taking a
derivative of the Laplace transform, we get

Ny Ny L
—7r — Tr r<my,
Yr s+
Oy =4 kr—1_ kr .
ritT T — T r=myg,
'Vm] S‘{"Ym]
0 otherwise.

-1
So we need to calculate expressions of the form .~ {(s+7,)"'#;(s)}. Rather than use the convolution

theorem as before, here we apply the residue theorem multiple times. The first application gives

jl{ Ty } _ Vm ! _WtdetKM( )mﬁ1< Y >nk
s+ ('Ym] - %’)klnr! he1 Y& — Vr

k#r
+mi:1 ety et det (Hy (1) + K0 (nj)) mﬁl ( Tk )M
G LTCAREA RN § S
];ér k#j
+7§{z femrt det(Hy () + Ki,(kr)) mﬁ1< e )"’“ (37)
(vr = Y, ) (k1 — 1) i \ %k = Ymi )
where K 1,-(t) is a n, X n, matrix with components
(
-1
(n, —p)! | ng kr
T + + 1ty p<gq,
Kylp(t) =4 (0 =9 ;;) (yr = W)IPHL (e — Y )P re
rlpg 2
-1 p=q+1,
0 otherwisem




and where Ky ,(a) =0ifa=1orifa >1Kj,(a)is a (a—1) x (¢ — 1) matrix with components

(nj —1—p)! 1 <
pP=>gq,
(K1rlpg(nj) = ¢ (nj —1—a)! (v; — )P
0 otherwise,
and (hy— 1 p)! )
I—1—D)
p=<gq,
Kirlpg(kr) = 4 (k1 = 1= @)! (ym, — )27 H!
0 otherwise.

The second application of the residue theorem gives

e { AT } m121 'yf,{;lfy?je*“ﬁtdet(HI,j(t) + K1, (1)) mﬁl ( Vi )nk

T i=1 (ymg =)+t (g — 1)} o \E =
i
+'Yfr{fle*”mzt det Hp (1) mﬁl o\
kI! Yk — Tm ’
k=1 I
where Hy(¢) is a kr X kr matrix defined by
-1
(kr —p)! T ng
(1] pq () = (kr —q)! —1 (Ym; — Yi)? P H pq
1 R
0 otherwise.

10
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This gives the full final expression as

( —tmr(t) + tmr—1(t) r=mr=11#N+1,

kr—1 i
k['}/kl 1 ,Ynlcx
gl 11

mr—1

et det(Hy (1) + K, (n))) ”ﬁl < 1 >
(Ymy = )Fr ;=82 e =
k#j

itdet Hp () (1 \™
+e 1*de 11()H< > r=mr#1, I#A#N+1,
Yk — Ymy

kr!
I k=1

=1

mr—1
Ty

,Y—WI( ) = ekl H Nt X
-

et det Ky ,.(t) mlf—ll ( 1 )"k

('ij ’yr)klnr! b1 Yk — Vr
k#r
Opmy(t) = +m171 et det(H[J( )+K1r n]) mr—1 < >nk
= Oy =795 O =) (g = 1)! T
jr =
i - ~1
+e rmrt det(Hp(t) + Kr.r(kr)) mﬁ (#)nk r<mr, I#N+1
(Y = ) (kr = 1)! k=1 Nk T ma | |

n M+1
,Y—TWN+1(’5) —ny ] =

r

—%tdet RN-H,T (t) Aﬁl 1 "
7! P

= Ye — Ir
k#r
M+1 M+1
* e det(Hn1(8) + Ky, (ng)) T L™ _
+ Z H I=N+1,
g (r —5)(n; — 1)! o \ Yk~
i kg
0 otherwise.

(40)

2 Metric for the shedding models

2.1 Underlying Fisher-Rao metric

We first note the straightforwardly-obtained result that if ¢ is the pdf of a normal distribution with
mean x(6) and standard deviation o(@), then the Fisher-Rao metric will contain terms like

1 2
Jap = Eg[0aIn(¢)OpIn(¢)] = -3 Ot + ﬁaao'abo' : (41)

We now consider how this metric is calculated for the four different shedding models considered in the
main paper.

11



2.2 The SIR model

For the simple SIR model defined in the main paper (Eq. (14)) we have
w(r,y) =1e 7, o(t,y)=o0. (42)
The derivatives are therefore
Orp=¢e"7, Oyp=—1e 7, 0,0=0. (43)
Substituting into (41) gives the Fisher-Rao metric as having the following form:

G = eizw (_1 _2T> : (44)

g T T

This has the issue that there is full unidentifiability, reflected in the fact that this metric attributes
zero distance to travel along constant-re~7 curves. Our solution to this problem is to add an amount
of distance in these directions to give full metric

o5 (1 2[5 D)

where « is a constant parameterising the amount of distance added.

While it was not necessary to do this for any of our other models, we suggest that as a general
methodological point if an initial metric took a form similar to (45), but for very small « that caused

potential numerical issues with forming its inverse, then it may be advisable to increase the value of
« by hand.

2.3 Influenza and Ebola

Here our likelihood is given by a product of normal probability density functions

L= H (b(u(t)v U(t)) ) (46)

teT
where

=T Z (¢ T7(t) , o(t) = oy is given in data. (47)

Given the results above for m; t), we can then write down that for influenza the metric has compo-
nents

T(t)
gTyT = ? gZh] Z 8271' t) ’ gT’i - Z U—galﬂ-(t) ' (48)
ter 7 teT
For Ebola, we have to consider both hlgh— and low-viraemic pathways of infection separately, but
otherwise the metric is

2.4 Norovirus

Our norovirus model has the same form as (46) except that o(f) = o is a model parameter.

Since for these data we have a large number of approximately uniformly-distributed time points, we
use integrals rather than sums over time for computational efficiency leading to expressions

o0 X = t
Gij = / %@f(t)aﬁ(t)dt , 9ri = / iﬁaﬁ(t)dt ,
o O 0 o
(49)
2
"9 9r.r = Yo,a#tc = 0 s

Yoo =

which can be straightforwardly computed from the results above.

12



2.5 Other contributions to the metric

We can include the contribution of a rate-p, exponential prior on 6, through performing calculations
for uniform / improper priors and then making the transformation

L = Ol — pa - (50)

For SMMALA the metrics we have considered so far are all that is required, and have the primary
benefit of introducing local second-order derivative information into the MCMC algorithm, but for
WLMC we make additional use of the possibilities for reduction of global distances possible in a
geometric approach.

3 The WLMC algorithm

3.1 Lagrangian Monte Carlo (LMC)

The ‘HMC’ dynamics introduced in the main paper can be generalised to a geometric approach in
two ways. The ‘RMHMC’ approach of [2] involves Hamiltonian dynamics with a discretized integra-
tor, the generalized leapfrog method [6, 2], which requires significant numerical effort, in particular
fixed-point iterations, to solve implicit equations. This step is potentially computational intensive
(repeated matrix inversion of G(8) involves O(D?373) operations in dimension D), and can sometimes
be numerically unstable [3].

To address this issue, Lan et al. [4] propose an explicit integrator for geometric MCMC by using the
following Lagrangian dynamics:

de dv

— = — =G oL —-v'r(e 1
T % () 0L —v I(O)v, (51)

where v(0) := G(0(0))~'p(0) ~ M(0,G(8(0))"!), and I'(@) are Christoffel Symbol of the second kind

whose (i, j, k)-th element is Ffj = %gkm(aigmj + 0;Gim — Omgij) with g*™ being the (k,m)-th element

of G(0)~ 1.

The following explicit integrator can then be derived for these dynamics:

1 g -1 3 —
v [14 59(9<Z>,V<Z>))] v - SG(0) Wos(0)] . (52)
O+ = () 4 oyllts) (53)
VD = [14 2o, v )] [V Za(e ) (0] (54

where Q(O(Z),v(é)))kj = (v(@)ir(o(f))fj. Such an integrator is time reversible but not volume preserv-
ing. The acceptance probability is adjusted to have the detailed balance condition hold [4]:

} ; (55)

dz(L+1)

o = min {1,exp(—E(Z(L+1)) + E(Z(l))) dz)
z

where the Jacobian determinant is

dzD | det(I —/2Q(0 D vIHD)) det(I — £/2Q(89), vI+1/2))) (56)
dz(®) det(I 4 £/2Q(0FD  v(+1/2))) det (T + £/2Q(01) v(D))
and E(z) is the energy for the Lagrangian dynamics defined as:
1 1
E0,p) = —logn(0|D) — 5 log det G(0) + §VTG(0)V . (57)

13



The resulting algorithm, Lagrangian Monte Carlo (LMC) is a valid exact sampler and has the same
strength in exploring complex geometry as RHMC does. LMC is sometimes more efficient and stable
than RHMC - for more details see [3, 4].

3.2 WLMC

When the target distribution is multi-modal, derivative-based and geometric algorithms tend to fail
as they are easily trapped in some of the modes without visiting all of them. Making proposals
by numerically simulating Hamiltonian dynamics, the sampler has difficulty in passing through low
probability regions [7]. Compared to HMC, the geometric RHMC and LMC methods perform even
worse in relation to this issue because they are more adapted to the local geometry and more likely
to be trapped in one mode.

To overcome this issue, some kind of global knowledge of the distribution needs to learned and
incorporated. Lan et al. [5] proposed the idea of using wormholes for these geometric algorithms
(HMC/RHMC/LMC) to work on multi-modal distributions. The proposed method comes in 2 parts:
a distance-shortening metric and a mode-jumping mechanism.

3.3 Wormbhole Metric

Let 91 and 92 be two modes of the target distribution. We define a straight line segment, vy := 92—91,
and refer to a small neighborhood (tube) of the line segment as a wormhole. Next, we define a wormhole
metric, Gy (0), in the vicinity of the wormhole. For a pair of tangent vectors u,w at 6, wormhole
metric Gy is defined as follows

Giy(u,w) := (u — (u, viy)viy, w — (w, viy)viy) = uT [T = vip(viy) Jw (58)
Gy = Giy +eviy(viy) ' =I- (1 —e)viy(viy) ", (59)

where v{j, = viy/[[vi||, and 0 < ¢ < 1 is a small positive number. To see that Gy in fact shortens
the distance between 6; and 09, consider a simple case of a straight line: 8(t) = 6, + viyt,t € [0,1].
In this case, the distance under Gy is

1
dist (01, 0) :/ /iy Gwvwdt = Vellviv || < v
0

which is much smaller than the Euclidean distance.

Next, we define the overall metric, G, for the whole parameter space of 8 as a weighted sum of the
base metric GGy and the wormhole metric Gyy,

G(6) = (1 - m(0))Go(0) + m(0)Gw , (60)
where m(6) € (0,1) is a mollifying function designed to make the wormhole metric Gy influential in

the vicinity of the wormhole only.

3.4 Wormbhole Network

For more than two modes, the above method alone could suffer from two potential shortcomings in
higher dimensions. First, the effect of wormhole metric could diminish quickly as the sampler leaves
one mode and moves towards another mode. Secondly, such a mechanism, which modifies the dynamics
in the existing parameter space, could interfere with the native dynamics in the neighborhood of a

14



wormbhole, possibly preventing the sampler from properly exploring areas around the modes as well as
some low probability regions.

To address the first issue, we add an external vector field to enforce the movement between modes.
More specifically, we define a vector field, f(8,v), in terms of the position parameter 8 and the velocity
vector v = G(0)~!p as follows:

£(6,v) = exp{=V(0)/(DF)}U(6)(v, viy)viy = m(0){v, viy)vyy , (61)

with mollifier m(0) := exp{—V(0)/(DF)}, where D is the dimension, F' > 0 is the influence factor,
and V(0) is a vicinity function indicating the Euclidean distance from the line segment vy,

V(8) := (6 — 81,6 —6) + (6 — 61, v{y)[|(6 — 62, viy)| . (62)

After adding the vector field, we modify the Hamiltonian /Lagrangian dynamics governing the evolution
of 8 as follows:

0=v-+£0,v). (63)

To address the second issue, we allow the wormholes to pass through an extra auxiliary dimension
to avoid their interference with the existing dynamics in the given parameter space. In particular
we introduce an auxiliary variable 6p11 ~ N(0,1) corresponding to an auxiliary dimension. We use
0= (8,0p.1) to denote the position parameters in the resulting D + 1 dimensional space MP” x R.
fp+1 can be viewed as random noise independent of 8 and contributes %9% 41 to the total potential
energy. Correspondingly, we augment velocity v with one extra dimension, denoted as v := (v,vpy1).
At the end of the sampling, we project 8 to the original parameter space and discard Opy1-

We refer to MP x {—h} as the real world, and call MP x {+h} the mirror world. Here, h is half of the
distance between the two worlds, and it should be in the same scale as the average distance between
the modes. For most of the examples discussed here, we set h = 1. Figure S1 illustrates how the two
worlds are connected by networks of wormholes.

One can refer to [5] for full algorithmic details of Wormhole HMC/LMC, including the case where the
modes are initially unknown.
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4 Supplementary figure
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Figure S1: Illustrating a wormhole network connecting the real world to the mirror world (h = 1). As
an example, the cylinder shows a wormhole connecting mode 5 in the real world to its mirror image.
The dashed lines show two sets of wormholes. The red lines shows the wormholes when the sampler
is close to mode 1 in the real world, and the magenta lines show the wormholes when the sampler is
close to mode 5 in the mirror world.

5 Mathematica code

We provide the following code sample provides as an example of how closed-form expressions for
quantities of interest for the influenza model can be obtained using computer algebra.

(* Set up the SEEIIR equations *)
seeiirEqgs = {

el’ [t] ==-2p[3] ellt],

e2’ [t] ==2p[3](el[t]- e2[t]),

i1’ [t] ==2p[3] e2[t]- 2p[2] i1[t],
i27 [t] ==2p[2] (i1[t]- i2[t]),

Rt’ [t]==i1[t]+i2[¢t],

el1[0]==1,
e2[0]==0,
i1[0]==0,
i2[0]==0,
Rt [0]==0};

(* Find a solution, the force of infection and its derivatives %)
sol = DSolvel[seeiirEqs,{el[t],e2[t],i1[t],i2[t],Rt[t]1},t];

la = FullSimplify[p[1] (i1[t]+i2[t])/.sol[[1]1]]

dla = Table[FullSimplify[D[la,p[k]]],{k,1,3}]

ddla = Table[FullSimplify[D[dla[[1]],p(k]]],{k,1,3},{1,1,3}]
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